Как улучшить качество водопроводной воды? Методы улучшения качества питьевой воды традиционных способов, как улучшить качество воды.

01.08.2023

Физические и химические показатели качества воды. При выборе источника водоснабжения учитываются такие физические свойства воды как температура, запах, вкус, мутность и цветность. Причем эти показатели определяются по всем характерным периодам года (весна, лето, осень, зима).

Температура природных вод зависит от их происхождения. В подземных водоисточниках вода имеет постоянную температуру независимо от периода года. Наоборот, температура воды поверхностных водоисточников изменяется по периодам года в достаточно широком диапазоне (от 0,1 °С зимой до 24-26°С летом).

Мутность природных вод зависит, прежде всего, от их происхождения, а также от географических и климатических условий, в которых находится водоисточник. Подземные воды имеют незначительную мутность, не превышающую 1,0-1,5 мг/л, зато воды поверхностных водоисточников почти всегда содержат взвешенные вещества в виде мельчайших частей глины, песка, водорослей, микроорганизмов и других веществ минерального и органического происхождения. Однако, как правило, вода поверхностных водоисточников северных регионов европейской части России, Сибири и частично Дальнего Востока относится к категории маломутных. Для водоисточников центральных и южных регионов страны, наоборот, характерна более высокая мутность воды. Независимо от географических, геологических и гидрологических условий расположения водоисточника мутность воды в реках всегда выше, чем в озерах и водохранилищах. Наибольшая мутность воды в водоисточниках наблюдается во время весенних паводков, в периоды затяжных дождей, а наименьшая - в зимнее время, когда водоисточники покрыты льдом. Измеряется мутность воды в мг/дм 3 .

Цветность воды природных водоисточников обусловлена наличием в ней коллоидных и растворенных органических веществ гумусового происхождения, придающих воде желтый или бурый оттенок. Густота оттенка зависит от концентрации этих веществ в воде.

Гумусовые вещества образуются в результате разложения органических веществ (почвенный, растительный гумус) до более простых химических соединений. В природных водах гумусовые вещества представлены, в основном, органическими гуминовыми и фульво-кислотами, а так же их солями.

Цветность характерна для вод поверхностных водоисточников и практически отсутствует в подземных водах. Однако иногда подземные воды, чаще всего в болотисто-низинных местах с надежными водоупорными горизонтами, обогащаются болотистыми цветными водами и приобретают желтоватую окраску.

Цветность природных вод измеряется в градусах. По уровню цветности воды поверхностные водоисточники могут быть малоцветные (до 30-35°), средней цветности (до 80°) и высокоцветные (свыше 80°). В практике водоснабжения иногда используются водоисточники, цветность воды которых составляет 150-200°.

Большинство рек Северо-запада и Севера России относятся к категории высокоцветных маломутных. Средняя часть страны характеризуется водоисточниками средней цветности и мутности. Вода рек южных регионов России, наоборот, имеет повышенную мутность и сравнительно небольшую цветность. Цветность воды в водоисточнике и количественно и качественно изменяется по периодам года. Во время повышенного стока с прилегающих к водоисточнику территорий (таяние снега, дожди), цветность воды, как правило, повышается, изменяется и соотношение компонентов цветности.

Природным водам свойственны такие качественные показатели, как привкус и запах. Чаше всего природные воды могут обладать горьким и соленым вкусом и практически никогда кислым или сладким. Избыток магниевых солей придает воде горьковатый вкус, а натриевых (поваренная соль) - солоноватый. Соли других металлов, например железа и марганца, придают воде железистый привкус.

Запахи воды могут быть естественного и искусственного происхождения. Естественные запахи вызываются живущими и отмершими в воде организмами, растительными остатками. Основными запахами природных вод являются болотный, землянистый, древесный, травянистый, рыбный, сероводородный и др. Наиболее интенсивные запахи присущи воде водохранилищ и озер. Запахи искусственного происхождения возникают вследствие выпускав водоисточники недостаточно очищенных сточных вод.

К запахам искусственного происхождения можно отнести нефтяной, фенольный, хлорфенольный и др. Интенсивность привкусов и запахов оценивается в баллах.

Химический анализ качества природной воды имеет первостепенное значение при выборе метода очистки ее. К химическим показателям воды относятся: активная реакция (водородный показатель), окисляемость, щелочность, жесткость, концентрация хлоридов, сульфатов, фосфатов, нитратов, нитритов, железа, марганца и др. элементов. Активная реакция воды определяется концентрацией водородных ионов. Она выражает степень кислотности или щелочности воды. Обычно активную реакцию воды выражают водородным показателем рН, который представляет собой отрицательный десятичный логарифм концентрации водородных ионов: - рН = - lg . Для дистиллированной воды рН = 7 (нейтральная среда). Для слабокислой среды рН < 7, а для слабощелочной рН > 7. Обычно для природных вод (поверхностных и подземных) значение рН находится в пределах от 6 до 8,5. Наименьшие значения водородного показателя имеют высокоцветные мягкие воды, а наибольшие - подземные, особенно жесткие.

Окисляемость природных вод вызвана присутствием в них органических веществ, на окисление которых расходуется кислород. Поэтому величина окисляемости численно равна количеству кислорода, пошедшего на окисление находящихся в воде загрязняющих веществ, и выражается в мг/л. Наименьшей величиной окисляемости (~1.5-2мг/л, О 2) характеризуются артезианские воды. Вода чистых озер имеет окисляемость 6-10 мг/л, О 2 , в речной воде окисляемость колеблется в широких пределах и может достичь 50 мг/л и даже более. Повышенной окисляемостью характеризуются высокоцветные воды; в болотистых водах окисляемость может достичь 200 мг/л О 2 и более.

Щелочность воды определяется присутствием в ней гидроксидов (ОН") и анионов угольной кислоты (НСО - з, СО 3 2 ,).

Хлориды и сульфаты содержатся практически во всех природных водах. В подземных водах концентрации этих соединений могут быть весьма значительны, до 1000 мг/л и более. В поверхностных водоисточниках содержание хлоридов и сульфатов обычно колеблется в пределах 50-100 мг/л. Сульфаты и хлориды при определенных концентрациях (300 мг/л и более) являются причиной коррозионной активности воды и разрушающе действуют на бетонные конструкции.

Жесткость природных вод обусловлена присутствием в них солей кальция и магния. Хотя указанные соли и не являются особо вредными для человеческого организма, наличие их в значительном количестве нежелательно, т.к. вода становится малопригодной для хозяйственных нужд и для промышленного водоснабжения. Жесткая вода не пригодна для питания паровых котлов, ее нельзя использовать во многих технологических производственных процессах.

Железо в природных водах находится в виде двухвалентных ионов, органоминеральных коллоидных комплексов и тонкодисперсной взвеси гидроксида железа, а также в виде сульфида железа. Марганец, как правило, находится в воде в виде ионов двухвалентного марганца, способного окисляться в присутствии кислорода, хлора или озона, до четырехвалентного, с образованием гидроксида марганца.

Наличие в воде железа и марганца может приводить к развитию в трубопроводах железистых и марганцевых бактерий, продукты жизнедеятельности которых могут накапливаться в больших количествах и существенно уменьшать сечение водопроводных труб.

Из растворенных в воде газов наиболее важными с точки зрения качества воды являются свободная углекислота, кислород и сероводород. Содержание углекислоты в природных водах колеблется от нескольких единиц до нескольких сотен миллиграммов в 1 л. В зависимости от величины рН воды углекислота встречается в ней в виде углекислого газа либо в виде карбонатов и бикарбонатов. Избыточная углекислота весьма агрессивна по отношению к металлу и бетону:

Концентрация растворенного в воде кислорода может колебаться от 0 до 14 мг/л и зависит от ряда причин (температура воды, парциальное давление, степень загрязненности воды органическими веществами). Кислород интенсифицирует процессы коррозии металлов. Это надо особенно учитывать в теплоэнергетических системах.

Сероводород, как правило, попадает в воду в результате контакта ее с гниющими органическими остатками либо с некоторыми минералами (гипсом, серным колчеданом). Присутствие сероводорода в воде крайне нежелательно как для хозяйственно-питьевого, так и для промышленного водоснабжения.

Ядовитые вещества, в частности тяжелые металлы, попадают в водоисточники в основном с промышленными сточными водами. Когда имеется вероятность их попадания в водоисточник, определение концентрации ядовитых веществ в воде обязательно.

Требования к качеству воды различного назначения. Основные требования, предъявляемые к питьевой воде, предполагают безвредность воды для организма человека, приятный вкус и внешний вид, а также пригодность для хозяйственно-бытовых нужд.

Показатели качества, которым должна удовлетворять питьевая вода, нормируются «Санитарными правилами и нормами (СанПиН) 2. 1.4.559-96. Питьевая вода.»

Вода для охлаждения агрегатов многих производственных процессов не должна давать отложений в трубах и камерах, по которым она проходит, так как отложения затрудняют теплопередачу и уменьшают сечение труб, снижая интенсивность охлаждения.

В воде не должно быть крупной взвеси (песка). В воде не должно быть органических веществ, так как она интенсифицирует процесс биообрастания стенок.

Вода для паросилового хозяйства не должна содержать примесей, которые могут вызвать отложения накипи. По причине образования накипи снижается теплопроводность, ухудшается теплопередача, возможен перегрев стенок паровых котлов.

Из солей, образующих накипь, наиболее вредны и опасны CaSO 4 , СаСО 3 , CaSiO 3 , MgSiO 3 . Эти соли отлагаются на стенках паровых котлов, образуя котельный камень.

Для предотвращения коррозии стенок паровых котлов вода должна обладать достаточным щелочным резервом. Ее концентрация в котловой воде должна составлять не менее 30-50 мг/л.

Особенно нежелательно присутствие в питательной воде котлов высокого давления кремниевой кислоты SiO 2 , которая может образовывать плотную накипь с очень низкой теплопроводностью.

Основные технологические схемы и сооружения для улучшения качества воды.

Природные воды отличаются большим разнообразием загрязнений и их сочетанием. Поэтому для решения проблемы эффективной очистки воды требуются различные технологические схемы и процессы, различные наборы сооружений для реализации этих процессов.

Используемые в практике водоочистки технологические схемы обычно классифицируются на реагентные и безреагентные ; предочистки и глубокой очистки ; на одноступенные и многоступенные ; на напорные и безнапорные .

Реагентная схема очистки природных вод более сложна, нежели безреагентная, зато она обеспечивает более глубокую очистку. Безреагентная схема, как правило, применяется для предочистки природных вод. Чаще всего ее используют при очистке воды для технических целей.

Как реагентная, так и безреагентная технологическая схема очистки могут быть одноступенными и многоступенными, с сооружениями безнапорного и напорного типа.

Основные, чаще всего используемые в практике водоочистки технологические схемы и типы сооружений представлены на рисунке 22.

Отстойники используются в основном как сооружения для предварительной очистки воды от взвешенных частиц минерального и органического происхождения. По типу конструкции и характеру движения воды в сооружении отстойники могут быть горизонтальными, вертикальными или радиальными. В последние десятилетия в практике очистки природных вод стали использоваться специальные полочные отстойники с осаждением взвеси в тонком слое.



Рис. 22.

а) двухступенчатая с горизонтальным отстойником и фильтром: 1 - насосная станция I подъема; 2 - микросетки; 3 - реагентное хозяйство; 4 - смеситель; 5 - камера хлопьеобразования; б - горизонтальный отстойник; 7 - фильтр; 8 - хлораторная; 9 - резервуар чистой воды; 10 - насосы;

б) двухступенчатая с осветлителем и фильтром: 1 - насосная станция I подъема; 2 - микросетки; 3 - реагентное хозяйство; 4 - смеситель; 5 - осветлитель со взвешенным осадком; б - фильтр; 7 - хлораторная; 8 - резервуар чистой воды; 9 - насосы II подъема;

в) одноступенчатая с контактными осветлителями: 1 - насосная станция I подъема; 2 - барабанные сетки; 3 - реагентное хозяйство; 4 - сужающее устройство (смеситель); 5 - контактный осветлитель КО-1; 6 - хлораторная; 7 - резервуар чистой воды; 8 - насосы II подъема

Фильтры, входящие в состав общей технологической схемы водоочистки, выполняют роль сооружений для глубокой доочистки воды от взвешенных веществ, не осевших в отстойниках части коллоидных и растворенных веществ (за счет сил адсорбции и молекулярного взаимодействия).

Качество употребляемой современным человеком воды часто оставляет желать лучшего. Плохая жидкость, которую мы пьем и на которой готовим – это прямой путь к различным заболеваниям, в чем нет ничего хорошего. Как быть? Варианты улучшения качества воды доступны разные.

Во-первых, это дистилляция. Принцип получения очищенной жидкости состоит в перегонке через аппарат наподобие самогонного — водичка кипит, испаряется, охлаждается и снова превращается в обычную. Долго такую воду использовать не рекомендуется, поскольку она вымывает полезные вещества. Самостоятельно делать дистиллят достаточно хлопотно, зато, говорят, на нем отлично проводить разгрузочные дни – организм чистится очень качественно.

Во-вторых, можно использовать воду из скважин. Главное убедиться, что в жидкости не содержится вредных веществ, особенно удобрений, средств, направленных на борьбу с вредителями. В идеале еще нужно провести лабораторную оценку воды – стопроцентно чистую жидкость сегодня встретить невозможно, и что за химия идет в вашем случае, показать может только опытный способ.

Третий способ, используемый для улучшения показателей жидкости – это отстаивание. В ходе отстаивания эффективно «уходят» (то есть отстаиваются, выпадают в осадок) тяжелые фракции и Д2О, не полностью, но все же достаточно хорошо выветривается хлор. Что неплохо в отстаивании – так это его простота и дешевизна, что значительно хуже – сомнительное удобство, длительные сроки ожидания, малое количество воды.

Следующая методика, направленная на улучшение качественных показателей водных ресурсов — настаивание на камнях, содержащих кремень. Речь идет непосредственно про кремень, а также халцедон, аметист, горный хрусталь, агат – их особый состав позволяет не только удалять вредные примеси, но и придавать воде ряд гомеопатических свойств. Кстати, кремниевая вода эффективно усиливает действие настоев на целебных травах. Обратите внимание – камни лучше брать помельче, поскольку у них выше площадь соприкосновения. При постоянном использовании камни следует вымачивать в соляном растворе и ни в коем случае не мыть под водой, температура которой выше 40° С. Процесс настаивания занимает около недели, лучше всего брать для этих целей стеклянную посуду, хотя эмалированные кастрюли тоже подойдут. Нижний слой настоянной воды использовать не рекомендуется. Полученную жидкость кипятить не нужно – она уже пригодна для питья и готовки. Насыщенная кремнием вода положительно воздействует на печень и почки, улучшает обменные процессы, может использоваться для похудения.

Еще одним достаточно распространенным «доморощенным» способом улучшения качеств воды является ее оттаивание. Талая жидкость заметно улучшает работу органов и систем, состав крови и лимфы. Она полезна при тромбофлебитах, повышенном уровне холестерина, при геморрое, проблемах с метаболизмом.
Очистка кислотой, кипячением, активированным углем, серебром – это все тоже работающие методики, которые вы можете использовать по своему усмотрению.

Наиболее эффективными в работе и при этом простыми в использовании являются специальные фильтры и очистные системы. Подобрать оптимальное решение вам поможет профессиональный консультант.

По результатам домашней проверки, качество Вашей водопроводной воды можно улучшить.

Питьевая вода, подающаяся в городскую квартиру, уже прошла стадию очистки и обеззараживания на станции водоподготовки.

В водопроводной воде могут присутствовать примеси и загрязнения, которые либо не удаляются на водопроводных очистных сооружениях полностью, либо появляются в воде уже на пути к потребителю.

Многие вещества, загрязняющие воду, способствуют образованию мутных взвесей, вызывают неприятный запах, характерный привкус, а также могут окрашивать воду в тот или иной цвет.

Однако, наличие некоторых примесей может никак не отразиться на внешнем виде водопроводной воды.

Простые способы, которые помогут сделать водопроводную воду чище и безопаснее .

  • Прежде чем использовать водопроводную воду, слейте ее в течение нескольких минут, т. к. в трубах она быстро застаивается.
  • Дайте воде отстояться в открытом сосуде, чтобы улетучился остаточный хлор.
  • Затем профильтруйте воду через любой фильтр. Даже простейшие накопительного типа, лучше, чем ничего. Фильтрование позволит удалить из воды взвесь и часть микроорганизмов.

Вы обнаружили в воде мутность.

Мутная вода - это результат присутствия в воде взвешенных и коллоидных примесей, либо повышенное содержание воздуха в воде.

Взвешенные и коллоидные частицы - это очень мелкие частицы: соединения алюминия и железа, кремния, продукты жизнедеятельности и распада растений и животных.

Для очистки воды от этих загрязняющих компонентов рекомендуется использовать комбинацию механических фильтров (с инертной загрузкой) и угольных фильтров с загрузкой из активированного угля.

Вы обнаружили в воде цвет.

Цветность может быть обусловлена растворёнными и взвешенными частицами минерального и органического происхождения.

Желтый оттенок воды – присутствие гумусовых веществ (гуминовых и фульвокислот), или повышенное содержание железа.

Серый оттенок воды - повышенное содержание марганца, железа

Красновато-бурый осадок - присутствие в воде окисленного железа.

Для очистки воды от этих загрязняющих компонентов рекомендуется использовать предварительную очистку на механическом фильтре и далее - фильтр с угольной загрузкой или систему на основе обратного осмоса.

Вы обнаружили в воде запах .

Запах рыбный или затхлый - присутствие в воде хлорорганических соединений.

Запах сероводорода (запах тухлых яиц) - попадание сточных вод в систему водоснабжения или жизнедеятельность бактерий, образующих сероводород из сульфатов.

Хлорный запах - повышенное содержание в воде остаточного хлора.

Запах нефтепродуктов - попадание нефтепродуктов в систему водоснабжения.

Химический запах, запах фенола - загрязнение воды промышленными стоками, в частности, стоками предприятий органической химии.

Для очистки воды от этих загрязняющих компонентов рекомендуется использовать фильтр с угольной загрузкой или систему на основе обратного осмоса.

Вы обнаружили в воде привкус .

Привкус солоноватый - высокое содержание солей натрия и магния

Для очистки воды от этих загрязняющих компонентов рекомендуется использовать систему на основе обратного осмоса.

Привкус металлический - повышенное содержание железа.

Привкус, обусловленный органическими загрязнениями.

Щелочной привкус – высокая щелочность воды, повышенная жесткость, высокое содержание растворённых веществ.

Вы обнаружили накипь в чайнике.

Накипь свидетельствует о наличии в воде излишков солей кальция и магния.

Нитраты в воде

Источник нитратов в воде – удобрения и сточные воды, попадающие в поверхностные и подземные водоёмы. Высокое содержание нитратов в воде опасно для человека и, особенно, для детей. Известно, что в организме часть нитратов превращается в более токсичное вещество – нитриты.

Следует отметить, что универсального фильтра, который чистит от всего: от хлора, от железа, от органики, от металлов, от бактерий и …не существует.

Для каждого вида загрязнений используется определенный тип фильтра. Поэтому, оптимальная очистная установка должна состоять из правильно подобранного набора узлов, каждый из которых удаляет определённый вид загрязнений.

В любом случае, системы очистных установок, состоящие из нескольких последовательно работающих фильтров с различной загрузкой, обеспечивают более качественную очистку воды, чем фильтр с однотипной загрузкой.

Для очистки питьевой воды, как правило, используется набор фильтров с различными загрузками либо мембранами, соответствующими типу загрязнений, которые необходимо удалить из воды. Часто система очистки включает в себя обеззараживание воды.

Ниже приведены основные компоненты установок для очистки питьевой воды, чтобы помочь Вам выбрать подходящую конструкцию.

Механические фильтры удаляют из воды взвешенные вещества.

В качестве загрузки используются пористые материалы (чаще всего керамические).

Угольные фильтры изготавливают на основе активированного угля, который является хорошим адсорбентом.

Угольный фильтр очищает воду от остаточного хлора, растворенных газов, органических соединений, включая токсины, запаха и улучшает вкусовые качества воды.

Фильтры для обезжелезивания удаляют железо и марганец. Для их изготовления используют специальные полимеры, ускоряющие окисления металла. Полученный, в результате реакции, осадок задерживается фильтрующей системой.

Фильтры с ионообменной загрузкой. В зависимости от типа ионообменной загрузки, эти фильтры удаляют различные ионы из воды, в том числе, эффективны для снижения жёсткости и удаления нитратов из воды.

Установки для очистки воды на основе обратного осмоса

Система обратного осмоса включает специальную мембрану, через которую пропускается питьевая вода. Мембраны задерживают 95 - 99,5% всех примесей.

Необходимо помнить, что из воды удаляется и большинство полезных веществ, необходимых для жизнедеятельности организма. Такая вода нарушает работу организма. Прежде всего, это относится к крепости костей, которая зависит от количества кальция в крови.

Недостаток в воде микроэлементов, отражается на работе печени, почек, нервной и иммунной систем. Поэтому, в очищенную обратным осмосом воду, следует добавлять необходимые организму соли и микроэлементы.

Установки для обеззараживания воды на основе ультрафиолетового излучения.

Ультрафиолетовое излучение инактивирует болезнетворные микроорганизмы. Эти установки обязательны в загородных домах и в сельской местности. В городских квартирах такие системы используют, в случае неэффективного обеззараживания водопроводной воды на центральных очистных сооружения.

Технические требования и правила эксплуатации установки для очистки питьевой воды .

  • система должна обеспечивать эффективную очистку воды.
  • для изготовления компонентов установки (корпус, трубы, загрузка…) должны использоваться нетоксичные материалы.
  • извлеченные из воды, в процессе очистки, примеси не должны повторно загрязнять очищенную воду.
  • обязательна своевременная промывка и замена фильтрующих элементов и бактерицидных ламп.

Обратите внимание, что оптимальный выбор системы очистки (тип фильтров, загрузки, способ обеззараживания и прочее) может быть произведен только на основе результатов лабораторного химического анализа Вашей питьевой воды.

Какие показатели желательно проверить в вашей воде :

Водородный показатель (pH), общая минерализация, органические вещества (окисляемость перманганатная, либо общий органический углерод), нефтепродукты, нитраты, нитриты, цианиды, фториды, жёсткость, тяжёлые металлы, общие колиформные бактерии, цисты лямблий, пестициды, галогенорганические соединения.

Кроме того, после выбора и установки системы очистки, отдайте пробы очищенной воды в лабораторию на химический анализ, чтобы убедиться в эффективности очистки.

Если эта статья на нашем сайте , была для вас полезна, то предлагаем вам книгу с Рецептами живого, оздоравливающего питания. Веганские и сыроедческие рецепты . А так же предлагаем вам подборку самых лучших материалов нашего сайта по мнению наших читателей. Подборку - ТОП лучших статей об здоровом образе жизнии здоровом питании вы можете найти там, где вам максимально удобно

ЛЕКЦИЯ № 3. МЕТОДЫ УЛУЧШЕНИЯ КАЧЕСТВА ВОДЫ

Использование природных вод открытых водоемов, а иногда и подземных вод в целях хозяйственно-питьевого водоснабжения практически невозможно без предваритель­ного улучшения свойств воды и ее обеззараживания. Чтобы качество воды соответствовало гигиеническим требованиям, применяют предварительную обработку, в результате которой вода освобождается от взвешенных частиц, запаха, привкуса, микроорганизмов и различных примесей.

Для улучшения качества воды применяются следующие методы: 1) очистка-удаление взвешенных частиц; 2) обез­зараживание-уничтожение микроорганизмов; 3) специаль­ные методы улучшения органолептических свойств воды, умягчение, удаление некоторых химических веществ, фторирование и др.

Очистка воды. Очистка является важным этапом в общем комплексе методов улучшения качества воды, так как улучшает ее физические и органолептические свойства. При этом в процессе удаления из воды взвешенных частиц удаляется и значительная часть микроорганизмов, в результате чего полная очистка воды позволяет легче и экономичнее осуществлять обеззараживание. Очистка осуществляется механическим (отстаивание), физическим (фильтрование) и химическим (коагуляция) методами.

Отстаивание, при котором происходит осветление и частичное обесцвечивание воды, осуществляется в специаль­ных сооружениях - отстойниках. Используются две конструк­ции отстойников: горизонтальные и вертикальные. Принцип их действия состоит в том, то благодаря поступлению через узкое отверстие и замедленному протеканию воды в отстойнике основная масса взвешенных частиц оседает на дно. Процесс отстаивания в отстойниках различной конструкции продолжается в течение 2-8 ч. Однако мель­чайшие частицы, в том числе значительная часть микроорганизмов, не успевает осесть. Поэтому отстаивание нельзя рассматривать как основной метод очистки воды.

Фильтрация - процесс более полного освобождения воды от взвешенных частиц, заключающийся в том, что воду пропускают через фильтрующий мелкопористый материал, чаще всего через песок с определенным размером частиц. Фильтруясь, вода оставляет на поверхности и в глубине фильтрующего материала взвешенные частицы. На водопро­водных станциях фильтрация применяется после коагуля­ции.

В настоящее время начали применяться кварцево-антрацитовые фильтры, значительно увеличивающие скорость фильтрации.

Для предварительной фильтрации воды используются микрофильтры для улавливания зоопланктона - мельчайших водных животных и фитопланктона-мельчайших водных растений. Эти фильтры устанавливают перед местом водо­забора или перед очистными сооружениями.

Коагуляция представляет собой химический метод очистки воды. Преимущество этого метода заключается в том, что он позволяет освободить воду от загрязнений, находящихся в виде взвешенных частиц, не поддающихся удалению с помощью отстаивания и фильтрации. Сущность коагуляции заключается в добавлении к воде химического вещества-коагулянта, способного реагировать с находящи­мися в ней бикарбонатами. В результате этой реакции образуются крупные, довольно тяжелые хлопья, несущие положительный заряд. Оседая вследствие собственной тяжес­ти, они увлекают за собой находящиеся в воде во взвешенном состоянии частицы загрязнений, заряженные отрицательно, и тем самым способствуют довольно быстрой очистке воды. За счет этого процесса вода становится прозрачной, улучшает­ся показатель цветности.

В качестве коагулянта в настоящее время наиболее ши­роко применяется сульфат алюминия, образующий с бикар­бонатами воды крупные хлопья гидрата окиси алюминия. Для улучшения процесса коагуляции используются высо­комолекулярные флокулянты: щелочной крахмал, флокулянты ионного типа, активизированная кремневая кислота и другие синтетические препараты, производные акриловой кислоты, в частности полиакриламид (ПАА).

Обеззараживание. Уничтожение микроорганизмов являет­ся последним завершающим этапом обработки воды, обеспе­чивающим ее эпидемиологическую безопасность. Для обеззараживания воды применяются химические (реагентные) и физические (безреагентные) методы. В лабораторных условиях для небольших объемов воды может быть использован механический метод.

Химические (реагентные) методы обеззаражи­вания основаны на добавлении к воде различных химических веществ, вызывающих гибель находящихся в воде микро­организмов. Эти методы достаточно эффективны. В каче­стве реагентов могут быть использованы различные силь­ные окислители: хлор и его соединения, озон, йод, перманганат калия, некоторые соли тяжелых металлов, се­ребро.

В санитарной практике наиболее надежным и испытан­ным способом обеззараживания воды является хлорирование. На водопроводных станциях оно производится при помощи газообразного хлора и растворов хлорной извести. Кроме этого, могут использоваться такие соединения хлора, как гипохлорат натрия, гипохлорит кальция, двуокись хлора.

Механизм действия хлора заключается в том, что при добавлении его к воде он гидролизуется, в результате чего происходит образование хлористоводородной и хлорновати­стой кислот:

С1 2 +Н 2 О=НС1+НОС1.

Хлорноватистая кислота в воде диссоциирует на ионы водорода (Н) и гипохлоритные ионы (ОС1), которые наряду с диссоциированными молекулами хлорноватистой кислоты обладают бактерицидным свойством. Комплекс (НОС1 + ОС1) называется свободным активным хлором.

Бактерицидное действие хлора осуществляется главным образом за счет хлорноватистой кислоты, молекулы которой малы, имеют нейтральный заряд и поэтому легко проходят через оболочку бактериальной клетки. Хлорноватистая кислота воздействует на клеточные ферменты, в частности на SH-группы, нарушает обмен веществ микробных клеток и способность микроорганизмов к размножению. В послед­ние годы установлено, что бактерицидный эффект хлора основан на угнетении ферментов-катализаторов, окислитель­но-восстановительных процессов, обеспечивающих энергети­ческий обмен бактериальной клетки.

Обеззараживающее действие хлора зависит от многих факторов, среди которых доминирующими являются биоло­гические особенности микроорганизмов, активность действу­ющих препаратов хлора, состояние водной среды и усло­вия, в которых производится хлорирование.

Процесс хлорирования зависит от стойкости микроорга­низмов. Наиболее устойчивыми являются спорообразующие. Среди неспоровых отношение к хлору различное, например брюшнотифозная палочка менее устойчива, чем палочка паратифа и т. д. Важным является массивность микробного обсеменения: чем она выше, тем больше хлора нужно для обеззараживания воды. Эффективность обеззараживания зависит от активности используемых хлорсодержащих препаратов. Так, газообразный хлор более эффективен, чем хлорная известь.

Большое влияние на процесс хлорирования оказывает состав воды; процесс замедляется при наличии большого количества органических веществ, так как большее коли­чество хлора уходит на их окисление, и при низкой темпе­ратуре воды. Существенным условием хлорирования являет­ся правильный выбор дозы. Чем выше доза хлора и чем продолжительнее его контакт с водой, тем более высоким будет обеззараживающий эффект.

Хлорирование производится после очистки воды и является заключительным этапом ее обработки на водо­проводной станции. Иногда для усиления обеззараживающе­го эффекта и для улучшения коагуляции часть хлора вводят вместе с коагулянтом, а другую часть, как обычно, после фильтрации. Такой метод называется двойным хлорированием.

Различают обычное хлорирование, т. е. хлорирование нормальными дозами хлора, которые устанавливаются каж­дый раз опытным путем, суперхлорирование, т. е. хлори­рование повышенными дозами.

Хлорирование нормальными дозами применяется в обычных условиях на всех водопроводных станциях. При этом большое значение имеет правильный выбор дозы хлора, что обусловливается степень хлорпоглощаемости воды в каждом конкретном случае.

Для достижения полного бактерицидного эффекта определяется оптимальная доза хлора, которая складывается из количества активного хлора, которое необходимо для: а) уничтожения микроорганизмов; б) окисления органиче­ских веществ, а также количества хлора, которое должно остать­ся в воде после ее хлорирования для того, чтобы служить показателем надежности хлорирования. Это количество называется активным остаточным хлором. Его норма 0,3-0,5 мг/л, при свободном хлоре 0,8-1,2 мг/л. Необходи­мость нормирования этих количеств связана с тем, что при наличии остаточного хлора менее 0,3 мг/л его может быть недостаточно для обеззараживания воды, а при дозах выше 0,5 мг/л вода приобретает неприятный специфический запах хлора.

Главными условиями эффективного хлорирования воды являются перемешивание ее с хлором, контакт между обез­зараживанием водой и хлором в течение 30 мин в теплое время года и 60 мин в холодное время.

На крупных водопроводных станциях для обеззаражи­вания воды применяется газообразный хлор. Для этого жидкий хлор, доставляемый на водопроводную станцию в цистернах или баллонах, перед применением переводится в газообразное состояние в специальных установках-хлораторах, с помощью которых обеспечиваются автоматиче­ская подача и дозирование хлора. Наиболее часто хлориро­вание воды производится 1% раствором хлорной извести. Хлорная известь представляет собой продукт взаимо­действия хлора и гидрата окиси кальция в результате реакции:

2Са(ОН) 2 + 2С1 2 = Са(ОС1) 2 + СаС1 2 + 2НА

Суперхлорирование (гиперхлорирование) воды проводит­ся по эпидемиологическим показаниям или в условиях, когда невозможно обеспечить необходимый контакт воды с хлором (в течение 30 мин). Обычно оно применяется в военно-полевых условиях, экспедициях и других случа­ях и производится дозами, в 5-10 раз превышающими хлорпоглощаемость воды, т. е. 10-20 мг/л активного хлора. Время контакта между водой и хлором при этом сокращается до 15-10 мин. Суперхлорирование имеет ряд преимуществ. Основными из них являются значительное сокращение времени хлорирования, упрощение его техники, так как нет необходимости определять остаточный хлор и дозу, и возможность обеззараживания воды без предва­рительного освобождения ее от мути и осветления. Недостатком гиперхлорирования является сильный запах хло­ра, но его можно устранить добавлением к воде тиосульфа­та натрия, активированного угля, сернистого ангидрида и других веществ (дехлорирование).

На водопроводных станциях иногда проводят хлориро­вание с преаммонизацией. Этот метод применяется в тех случаях, когда обеззараживаемая вода содержит фенол или другие вещества, которые придают ей неприятный запах. Для этого в обеззараживаемую воду вначале вводят аммиак или его соли, а затем через 1-2 мин хлор. При этом образуются хлорамины, обладающие сильным бактерицидным свойством.

К химическим методам обеззараживания воды относится озонирование. Озон является нестойким соединением. В воде он разлагается с образованием молекулярного и атомарного кислорода, с чем связана сильная окислительная способность озона. В процессе его разложения образуются свободные радикалы ОН и НО 2 , обладающие выраженными окислительными свойствами. Озон обладает высоким окислительно-восстановительным потенциалом, поэтому его реакция с органическими веществами, находящимися в воде, происходит более полно, чем у хлора. Механизм обеззараживающего действия озона аналогичен действию хлора: являясь сильным окислителем, озон повреждает жизненно важные ферменты микроорганизмов и вызывает их гибель. Имеются предположения, что он действует как протоплазматический яд.

Преимущество озонирования перед хлорированием за­ключается в том, что при этом способе обеззараживания улучшаются вкус и цвет воды, поэтому озон может быть использован одновременно для улучшения ее органолептических свойств. Озонирование не оказывает отрицатель­ного влияния на минеральный состав и рН воды. Избыток озона превращается в кислород, поэтому остаточный озон не опасен для организма и не влияет на органолептические свойства воды. Контроль за озонированием менее сложен, чем за хлорированием, так как озонирование не зависит от таких факторов, как температура, рН воды и т.д. Для обеззараживания воды необходимая доза озона в среднем равна 0,5-6 мг/л при экспозиции 3-5 мин. Озо­нирование производится при помощи специальных аппара­тов - озонаторов.

При химических способах обеззарараживания воды используют также олигодинамические действия солей тяжелых металлов (серебра, меди, золота). Олигодинамическим действием тяжелых металлов называется их способ­ность оказывать бактерицидный эффект в течение длитель­ного срока при крайне малых концентрациях. Механизм действия заключается в том, что положительно заряженные ионы тяжелых металлов вступают в воде во взаимодей­ствие с микроорганизмами, имеющими отрицательный заряд. Происходит электроадсорбция, в результате которой они проникают в глубь микробной клетки, образуя в ней альбуминаты тяжелых металлов (соединения с нуклеиновы­ми кислотами), в результате чего микробная клетка поги­бает. Данный метод обычно применяется для обеззаражи­вания небольших количеств воды.

Перекись водорода давно известна как окислитель. Ее бактерицидное действие связано с выделением кисло­рода при разложении. Метод применения перекиси водоро­да для обеззараживания воды в настоящее время еще полностью не разработан.

Химические, или реагентные, способы обеззараживания воды, основанные на добавлении к ней того или иного химического вещества в определенной дозе, имеют ряд недостатков, которые заключаются главным образом в том, что большинство этих веществ отрицательно влияет на со­став и органолептичеекие свойства воды. Кроме того, бактерицидное действие этих веществ проявляется после определенного периода контакта и не всегда распростра­няется на все формы микроорганизмов. Все это явилось причиной разработки физических методов обеззараживания воды, имеющих ряд преимуществ по сравнению с химиче­скими. Безреагентные методы не оказывают влияния на состав и свойства обеззараживаемой воды, не ухудшают ее органолептических свойств. Они действуют непосредст­венно на структуру микроорганизмов, вследствие чего обла­дают более широким диапазоном бактерицидного действия. Для обеззараживания необходим небольшой период времени.

Наиболее разработанным и изученным в техническом отношении методом является облучение воды бактерицид­ными (ультрафиолетовыми) лампами. Наибольшим бактери­цидным свойством обладают УФ лучи с длиной волны 200-280 нм; максимум бактерицидного действия приходит­ся на длину волны 254-260 нм. Источником излучения слу­жат аргонно-ртутные лампы низкого давления и ртутно-кварцевые лампы. Обеззараживание воды наступает быстро, в течение 1-2 мин. При обеззараживании воды УФ-лучами погибают не только вегетативные формы микробов, но и споровые, а также вирусы, яйца гельминтов, устойчивые к воздейст­вию хлора. Применение бактерицидных ламп не всегда возможно, так как на эффект обеззараживания воды УФ-лучами влияют мутность, цветность воды, содержание в ней солей железа. Поэтому, прежде чем обеззараживать воду таким способом, ее необходимо тщательно очистить.

Из всех имеющихся физических методов обеззаражива­ния воды наиболее надежным является кипячение. В ре­зультате кипячения в течение 3-5 мин погибают все имеющиеся в ней микроорганизмы, а после 30 мин вода становится полностью стерильной. Несмотря на высокий бактерицидный эффект, этот метод не находит широкого применения для обеззараживания больших объемов воды. Недостатком кипячения является ухудшение вкуса воды, наступающего в результате улетучивания газов, и возможность более быстрого развития микроорганизмов в кипяченой воде.

К физическим методам обеззараживания воды относится использование импульсного электрического разряда, ультра­звука и ионизирующего излучения. В настоящее время эти методы широкого практического применения не находят.

Специальные способы улучшения качества воды. Помимо основных методов очистки и обеззараживания воды, в не­которых случаях возникает необходимость производить спе­циальную ее обработку. В основном эта обработка направле­на на улучшение минерального состава воды и ее органолептических свойств.

Дезодорация - удаление посторонних запахов и привкусов. Необходимость проведения такой обработки обу­словливается наличием в воде запахов, связанных с жизне­деятельностью микроорганизмов, грибов, водорослей, продуктов распада и разложения органических веществ. С этой целью применяются такие методы, как озонирование, углевание, хлорирование, обработка воды перманганатом калия, переки­сью водорода, фторирование через сорбционные фильтры, аэрация.

Дегазация воды - удаление из нее растворенных дурно пахнущих газов. Для этого применяется аэрация, т. е. разбрызгивание воды на мелкие капли в хорошо проветриваемом помещении или на открытом воздухе, в резуль­тате чего происходит выделение газов.

Умягчение воды - полное или частичное удаление из нее катионов кальция и магния. Умягчение проводится специальными реагентами или при помощи ионообменного и термического методов.

Опреснение (обессоливание) воды чаще производит­ся при подготовке ее к промышленному использованию.

Частичное опреснение воды осуществляется для снижения содержания в ней солей до тех величин, при которых воду можно использовать для питья (ниже 1000 мг/л). Опресне­ние достигается дистилляцией воды, которая производится в различных опреснителях (вакуумные, многоступенчатые, гелиотермические), ионитовых установках, а также электро­химическим способом и методом вымораживания.

Обезжелезивание - удаление из воды железа про­изводится аэрацией с последующим отстаиванием, коагулированием, известкованием, катионированием. В настоящее время разработан метод фильтрования воды через песча­ные фильтры. При этом закисное железо задерживается на поверхности зерен песка.

Обесфторивание - освобождение природных вод от избыточного количества фтора. С этой целью применяют метод осаждения, основанный на сорбции фтора осадком гидроокиси алюминия.

При недостатке в воде фтора ее фторируют. В случае загрязнения воды радиоактивными веществами ее подвергают дезактивации, т. е. удалению радиоактивных веществ.

Хотя половодье в московском регионе после аномально снежной зимы, как заверили власти, прошло без происшествий, и водохранилища готовы к нормальной работе в течение всего года, качество воды в Московской области оставляет желать лучшего - по данным областных властей, 40% воды в водопроводе не соответствует нормам . Как жителям проверить качество воды, которая течет у них дома из крана, самостоятельно и в лаборатории, что нужно помнить при выборе фильтра и какие существуют способы улучшения качества воды, выяснял корреспондент "В Подмосковье".

Вода цвета чая: факторы риска

Питьевая вода по факту - гораздо более сложное соединение, чем известная по урокам химии формула H2O. В ней может содержаться большое количество разнообразных веществ и примесей, причем это не всегда означает плохое качество. В методических указаниях "Питьевая вода и водоснабжение населенных мест" Государственной системы санитарно-эпидемиологического нормирования РФ говорится о 68 наиболее часто содержащихся в питьевой воде веществах. Для каждого из них есть норма предельно допустимой концентрации (ПДК), при отступлении от которых эти вещества могут негативно влиять на состояние зубной эмали и слизистых, а также на жизненно важные органы человека: печень, почки, желудочно-кишечный тракт и многие другие. Конечно, если вы выпьете стакан неочищенной воды — организм сможет справиться с этим "микроотравлением". Но если потреблять вредные количества веществ ежедневно — это может негативно сказаться на здоровье.

На качество питьевой воды напрямую влияет деятельность человека. По словам эколога, заведующей лабораторией кафедры "Химия и инженерная экология" ФБГОУ МИИТ Марии Коваленко, основными причинами ухудшения качества питьевой воды Подмосковья являются:

Застройка зон, находящихся в единой экосистеме с артезианскими скважинами;

Изношенность водопроводной сети: по данным областного комплекса строительства ЖКХ, 36% сетей в Подмосковье - ветхие, и 40% воды не соответствует нормам;

Плохое состояние очистных сооружений: например, в Егорьевском районе по данным главного контрольного управления (ГКУ) Московской области, очистные сооружения в сельских поселениях изношены на 80% ;

Нерадивое отношение к промышленным отходам на многих предприятиях;

Стоимость анализа воды, в зависимости от количества необходимых исследований и лаборатории, может составить от 1200 до 3000 рублей. По словам сотрудников лаборатории кафедры "Химия и инженерная экология" ФБГОУ МИИТ, базовый анализ воды скважин и водопроводной сети насчитывает 30 основных показателей, среди которых алюминий, железо, марганец, нитраты, нитриты, хлориды, сульфиды и т. д.

Также с помощью лабораторного анализа можно проверить качество работы фильтра. Для этого нужно сдать на проверку воду до и после фильтрации и сравнить результаты.

Как очистить воду дома: чайник, фильтр, серебряные ложки

Специалисты предлагают улучшить качество питьевой воды в домашних условиях несколькими способами. Для начала нужно отстоять воду: налейте воду в емкость и дайте ей отстояться сутки, защитив от попадания пыли крышкой.

1. Фильтрация. Пропустите воду через любой фильтр, содержащий уголь. Это может быть фильтр-кувшин со сменной кассетой (средняя цена 400 рублей), насадка на кран (стоят примерно 200-700 рублей) и фильтр на стояк (их установка обойдется от 2 тысяч рублей и выше). У каждого из них — свои преимущества, однако важно помнить, что два последних варианта подойдут не всем домам. Например, в старых зданиях могут быть неудобства из-за снижения напора воды и слишком изношенных труб, в связи с чем фильтр вряд ли поможет.

2. Кипячение. Для кипячения воды используйте обычный чайник, а не электрический: вода будет закипать медленнее, зато накипи будет намного меньше.

3. Очищение серебром. Даже обычная серебряная ложка, опущенная в резервуар с водой, может улучшить ее свойства.

4. Обеззараживание воды ультрафиолетом или озонирование. При контакте воды с озоном и УФ-излучением разрушаются бактерии и вирусы. Для этого можно приобрести специальные установки. Прежде чем выбрать определенный фильтр на квартиру или весь подъезд, жильцам лучше посоветоваться со специалистом.

Подмосковье выведут на "Чистую воду"

Очевидно, что к проблеме очистки воды нужно подходить не только на уровне отдельно взятой квартиры, но и в масштабах всего региона. С 2013 года в Московской области проводится долгосрочная целевая программа "Чистая вода Подмосковья", которая рассчитана на 2013-2020 годы. Она направлена на улучшение качества питьевой воды , очищение сточных вод до нормативных показателей и снижение риска для здоровья населения. Сейчас проект проходит согласование с министерством финансов Московской области и комитетом по тарифам, и возможно, что уже в следующем году в ситуации с некачественной питьевой водой произойдут сдвиги на глобальном уровне.

Светлана КОНДРАТЬЕВА

Увидели ошибку в тексте? Выделите ее и нажмите "Ctrl+Enter"

© showroom-mais.ru, 2024
ShowRoom - Женский онлайн журнал