Интересные факты про невесомость. Почему в невесомости рост астронавтов становится больше? Другие интересные факты о космосе (4 фото)

20.06.2023

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ г. МОСКВЫ

ЗЕЛЕНОГРАДСКОЕ ОКРУЖНОЕ УПРАВЛЕНИЕ ОБРАЗОВАНИЯ ДО г. МОСКВЫ

Государственное бюджетное образовательное учреждение

Средняя общеобразовательная школа №853

О невесомости

Над проектом работали:

Алтухова Анна

Максакова Мария

Митрофанова Яна

Куратор: учитель математики

Попкова Людмила Григорьевна


Коротышка Знайка из романа-сказки Николая Носова «Незнайка на Луне» изобрёл прибор невесомости. С помощью прибора тяжесть не уничтожалась, а как бы смещалась от центра, где находился прибор, на несколько десятков метров вокруг. Около границы зоны невесомости при этом ощущалась повышенная тяжесть.

Подсчитайте, сколько преимуществ (и каких) даёт такая невесомость? Какие (и сколько) неудобства она причиняет?


Цель проекта

  • Цель проекта – дать понятие невесомости в комплексном виде (т.е. рассмотреть его с разных сторон), отметить актуальность данного понятия не только в рамках изучения космического пространства, отрицательного воздействия на человека, но и в рамках возможности использования на Земле технологии, изобретенных для уменьшения этого воздействия; проведения некоторых технологических процессов, которые трудно или невозможно реализовать в земных условиях. Выяснить, какие преимущества и какие недостатки у невесомости

Задачи проекта

  • Разобраться в механизме возникновения этого явления;
  • Описать этот механизм математически и физически;
  • Рассказать интересные факты про невесомость;
  • Понять, как состояние невесомости влияет на здоровье людей, находящихся в космическом корабле, на станции и т.д., то есть посмотреть на невесомость с биологической и медицинской точек зрения;

История невесомости

Исчезновение веса при движении опоры с ускорением свободного падения только под действием силы тяжести называется невесомостью .

Есть два вида невесомости.

Потеря веса, которая возникает на большом расстоянии от небесных тел из-за ослабления притяжения, называется статической невесомостью. А состояние, в котором находится человек во время полёта по орбите, – динамической невесомостью. Проявляются они совершенно одинаково. Ощущения человека одни и те же. Но причины разные.

Космонавты в полётах имеют дело только с динамической невесомостью.

Рассмотрим случай:Летит самолёт. В кабине приготовились к прыжку два парашютиста. Земля тянет их вниз. А они пока сопротивляются. Упёрлись ногами в пол самолёта. Чувствуют притяжение Земли – подошвы их ног с силой прижаты к полу. Они ощущают свой вес. «Ремешок натянут».

Но вот они согласились следовать туда, куда тянет их Земля. Стали на край люка и прыгнули вниз. «Ремешок провис». Ощущение притяжения Земли сразу же пропало. Они стали невесомы.



Это интересно

В невесомости кипение становится гораздо более медленным процессом.

В невесомости пламя свечи принимает сферическую форму.

И внутри нашего тела всё приспособлено к условиям весомости. У сердца мощная мускулатура, рассчитанная на то, чтобы непрерывно перекачивать несколько килограммов крови. И если вниз, в ноги, она ещё течёт легко, то наверх, в голову, её надо подавать с силой. Все наши внутренние органы подвешены на прочных связках. Если бы их не было, внутренности «скатились» бы вниз, сбились там в кучу. Из-за постоянной весомости у нас выработался специальный орган, вестибулярный аппарат, расположенный в глубине головы, за ухом.


Интересные факты

  • У астронавтов рано или поздно начинается космическая болезнь, которая сопровождается головными болями и проблемами в суставах при движении. Но это только часть проблем. Когда астронавт оказывается в невесомости, вся жидкость, которая находится в организме, поднимается вверх и вызывает закупорку носоглотки и отеки на лице. Мышцы начинают атрофироваться за ненадобностью, в костях все меньше кальция, а кишечник работает в 2 раза медленнее.
  • Еще один бонус от невесомости – это увеличение роста из-за низкого давления. Оно воздействует на позвоночник и человек вырастает как минимум на 5 см.
  • Те, кто возвращается из космоса, рассказывают, что из за невесомости очень трудно двигать руками и ногами сразу же после прилета. Поэтому приземление многие называют вторым рождением.
  • Еще возникают проблемы с адаптацией к восприятию притяжения. Если предмет падает, то он все-таки падает и для астронавтов это несколько непривычно.

Преимущества прибора

этим прибором можно воспользоваться с умом, для пользы (вовремя войны можно было сделать башню, в которой находился бы прибор; когда подходила армия врагов, нажималась кнопка и враг перемещался на безопасное расстояние)

Можно сделать станцию типа остановки в которой был установлен прибор и шли бы люди на эту станцию, нажимали на кнопку и перемещались на установленное расстояние

Можно использовать как маленькую, а может и не маленькую хитрость; на олимпиаде спортсмен во время прыжков в длину


Недостатки

в задании написано: "Около границы зоны невесомости при этом

ощущалась повышенная тяжесть." То есть осуществлялось некое

давление внутри перемещаемого тела, что может привести к

печальным последствиям для перемещаемого объекта (для первого

пункта преимуществ это даже плюс враг

уничтожался)

Для индивидуального использования прибор не подходит; опять же цитата из задания: "С помощью прибора тяжесть не уничтожалась, а как бы смещалась ОТ ЦЕНТРА, где НАХОДИТСЯ ПРИБОР..." То есть, если человеку перемещаться с помощью прибора, сама эта конструкция остаётся НА МЕСТЕ и приходится пользователю "бандуры« возвращаться за ней


Выводы

Невесомость возникает тогда, когда тело свободно падает вместе с опорой, т.е. ускорение тела и опоры равно ускорению свободного падения;

2) Невесомость бывает двух видов: статическая и динамическая;

3) Невесомость может быть использована для осуществления некоторых технологических процессов, которые трудно или невозможно реализовать в земных условиях;

4) Изучение пламени в условиях невесомости необходимо при разработке специальных средств пожаротушения;

  • Влияние невесомости на организм является

отрицательным, так как вызывает изменение ряда его жизненных функций. Это можно исправить путем создания на космическом корабле искусственной тяжести, ограничения мышечной активности космонавтов.

6)Условия невесомости нарушают способность правильно оценивать размеры объектов и расстояния до них, что мешает космонавтам ориентироваться в окружающем пространстве и может приводить к авариям во время космических полетов


Прибор позволяет с легкостью перемещать предметы (например, при строительстве), но при этом надо предусматривать их фиксацию на поверхности, также на границе зоны может происходить разрушение конструкций, если они не рассчитаны на возникающие увеличение тяжести. Если эти шары поместить около смерча, то он потеряет свою силу. Условия как внутри орбитальной космической станции.

Одев подобие, крыльев на руки или иной двигатель, а прибор, разместив за спиной, можно летать.

Можно проводить эксперименты в условиях, подобных условиям на орбитальной космической станции (например, выращивать кристаллы). Могут погибнуть некоторые животные.

Нужны специальные инструменты для работы в условиях невесомости. Для жизнедеятельности организмов необходимо перемешивания газовой среды для дыхания. На границе зоны, где повышена тяжесть, организм может погибнуть, если тяжесть (перегрузка) превышает придел его выносливости. Водоемы могут доставлять неудобства, так как вода будет принимать форму шара и перемещаться с потоками воздуха.


Далёкое будущее изобрели прибор невесомости, теперь с помощью такого прибора переправляют вещи с земли в космос (космонавтам на орбиту).

Сам прибор выглядит как тостер с двумя антеннами. Он создаёт цилиндр радиусом 1,5 м.снизу в этот цилиндр кладут вещи и они направляются в верх. Однако у этого прибора есть 1, но довольно весомый недостаток: так как этот цилиндр не имеет материальных границ, если груз не дошёл ещё до космоса он может выйти за его границы и упасть с гораздо большей скоростью, так как при этом притяжение к земле усиливается в несколько раз.


Причина невесомости заключается в том, что сила всемирного тяготения сообщает телу и его опоре одинаковые ускорения. Поэтому всякое тело, которое движется только под действием сил всемирного тяготения, находится в состоянии невесомости. Именно в таких условиях и находится свободно падающее тело.



Список литературы

1.Большая Советская Энциклопедия. Гл. ред. А.М.Прохоров.

2.Кабардин О.Ф. Физика: Справочные материалы: Учебное пособие для уч-ся.-

3.Колесников Ю.В., Глазков Ю.Н. На орбите – космический корабль.

Сила всемирного тяготения является неотъемлемой частью нашей жизни, хоть и мы воспринимаем это как что-то обыденное. И. Ньютон, благодаря упавшему яблоку ему на голову, разработал эту теорию, однако гравитация – это нечто большее.
До Ньютона такие ученые, как Кеплер, Декарт, Эпикур и другие, так же философствовали о существовании подобной силы. Но, по большому счету, они считали, что есть два притяжения: небесное (в космосе) и земное (на поверхности планеты). Исаак Ньютон пошел немного дальше, он связал между собой эти два понятия. К тому же, легенда о том, что он гулял по саду и на него упало яблоко, на самом деле выдумка и просто красивая история.

Гравитация – это сила притяжения между объектами пропорционально их массе. Оби-Ван Кеноби во всемирно известном фильме упоминал, что «сила – она вокруг нас и проникает в нас. Она скрепляет Галактику». Однако если добро и зло действует по дуальному принципу, то сила притяжения только притягивает предметы друг к другу, но не отталкивает их. Гравитация она вокруг нас. Это сила, которая держит планету в форме сферы, она не дает нам оторваться от поверхности. А еще гравитация держит нашу атмосферу вокруг себя и не дает ей парить в космосе. Ниже представлены несколько интереснейших фактах о силе всемирного тяготения.

Многие считают, что астронавты на космической станции и любители экстремальных развлечений на скорости, испытывают «нулевую» силу притяжения, т.е. некоторое время они неподвластны гравитации вовсе. На самом деле это в корне неверное утверждение, т.к. они стремятся вниз с такой же скоростью, что и предмет, в котором находятся.

Сила всемирного тяготения действует одинаково на все предметы, несмотря на их вес. К примеру, если сбросить с высоты два одинаковых по параметрам шлакоблока, но разных по весу, то дотронутся до поверхности земли они вместе. Дополнительная скорость предмета, который легче по своей массе, перекрывается инертность более тяжеловесного предмета.

Оказывается, что чем больше вес космического тела, тем тяжелее предметы, находящиеся на ней. Это значит, что один и тот же человек, который имеет вес в пятьдесят килограммов на нашей планете, на Сатурне бы весил в 2 раза больше.
Сила тяжести на планете определяется ее размерами. Например, на Марсе сила притяжения намного меньше, нежели на нашей планете. Этот факт негативно влияет на человеческий организм, поэтому человек не может находиться длительное время на этой планете.
Юпитер – не планета, и не звезда. Он имеет достаточную силу гравитации, что бы набрать нужный вес и стать полноценной звездой, небесным светилом, но его поле слишком слабое и не может запустить процесс преображения планеты.

Интересный факт! В отсутствие силы земного притяжения, т.е. в состоянии невесомости, все жидкости принимают форму шара. У Вас не получится помыть руки или перелить воду из сосуда в сосуд. Поэтому для того, что бы комфортно себя чувствовать в космосе, космонавты к этому долго привыкают. Даже сон для них непривычный, т.к. спят они в мешках, которые прикреплены к стенам корабля. К тому же, и со сном у астронавтов тяжелее, ведь фазы сна и бодрствования человека зависят от закатов и рассветов, а в космосе между этими двумя процессами проходит всего лишь 90 минут, т.е. в сутках наблюдается 8 циклов.

Многие думают, что в космосе нет силы гравитации. На самом деле это неверное утверждение. Сила гравитации есть практически везде, но она действует с разной силой. Как известно, сила гравитации между 2 телами обратно пропорциональна расстоянию между ними и соразмерно произведению их веса. Из-за того, что земной радиус немногим меньше, чем высота орбиты международной космической станции (приблизительно на 10 процентов), поэтому и сила притяжения там меньше и стремится она к нулю.

Пламя в отсутствие силы притяжения так же ведет себя иначе, чем мы привыкли. Все потому, что на Земле при горении воздух, насыщенный углекислым газом, поднимается, в то время, освобождая место для поступления кислорода. В условии невесомости такой смены воздуха нет, поэтому со временем весь кислород вокруг огня сгорает, и процесс горения прекращается. Из-за отсутствия конвекции воздуха в космосе страдает не только пламя, но и человек, потому как во время его неподвижности кислород также не циркулирует вокруг и заканчивается. Для таких ситуаций в отсеках космических кораблей предусмотрены вентиляторы для искусственной циркуляции воздуха.

По теории ученых, именно сила притяжения играет роль в определении высоты гор на Земле. Таким образом, для нашей планеты максимальной высотой гор будет расстояние не более, чем в 15 километров. К примеру, если бы Солнце стало нейронным светилом, то его мощная гравитация не дала бы появиться такому явлению, как горы, в принципе.

Оказывается, что сила гравитации в центре Земли действовала бы на предметы (если была бы возможность их там разместить) не так, как на поверхности планеты. В ядре планеты предметы тянуло бы одновременно по все четыре стороны, что, в принципе, аналогично ситуации в состоянии невесомости.

Гравитация действует не только на предметы, но и влияет на многие расчеты и факторы. Оказывается, что ее потенциал имеет значительное влияние на отсчет времени. Сравнительно недавно физики из Дании доказали, что центр нашей планеты моложе своей поверхности. Чем ниже гравитация, тем медленнее время. По гипотетическим измерениям возраст ядра и коры небесных тел значительно отличаются между собой в пользу их центра.

Все мы знаем, и ранее упоминали, что наличие самой силы на Земле открыл ученый Ньютон в 17 веке. Но мало кто знает, что на самом деле он описал лишь часть этой силы. Многие годы ученые пытались усовершенствовать эту теорию. Другой известный гений заявил, что сила тяготения – всего лишь искривление времени-пространства, создаваемое массой этого объекта. Этим ученым был Эйнштейн, и только лишь в 20 веке он стал ближе к разгадке этого явления. Но на самом деле гравитация хранит в себе еще много тайн, которые нам не подвластны на данный момент и в будущем предстоит еще разгадать.

1. У астронавтов рано или поздно начинается космическая болезнь, которая сопровождается головными болями и проблемами в суставах при движении. Но это только часть проблем. Когда астронавт оказывается в невесомости, вся жидкость, которая находится в организме, поднимается вверх и вызывает закупорку носоглотки и отеки на лице. Мышцы начинают атрофироваться за ненадобностью, в костях все меньше кальция, а кишечник работает в 2 раза медленнее.

2. Еще один бонус от невесомости – это увеличение роста из-за низкого давления. Оно воздействует на позвоночник и человек вырастает как минимум на 5 см.


3. Ученые провели опыты на крысах: что будет, если крыса вынашивает плод в космосе. Беременных крыс отправляли именно тогда, когда у плода начинало развиваться внутреннее ухо. Все потомство имело проблемы с вестибулярным аппаратом.


4. Астронавты, которые храпели, в космосе совершенно от этого избавлялись.


5. В космосе о полноценном сне и речи быть не может. Восходы случаются 16 раз, из-за чего конечно же происходят изменения и в восприятии ритма жизни.


6. Исследователи долгое время не могли решить вопрос с туалетом. Так как в условиях невесомости с этим возникают большие проблемы. Сначала придумали использовать что-то вроде презервативов в скафандрах, но этой идеи отказались. И теперь астронавты надевают подгузники только при выходе в открытый космос. На космическом же корабле туалет выглядит почти также как и обычный, но смыв происходит сильными потоками воздуха, а не воды.


7. Те, кто возвращается из космоса, рассказывают, что очень трудно двигать руками и ногами сразу же после прилета. Поэтому приземление многие называют вторым рождением. А еще возникают проблемы с адаптацией к восприятию притяжения. Если предмет падает, то он все-таки падает и для астронавтов это несколько непривычно.


При поддержке: При покупке квартиры или дома всегда возникает много хлопот. Одна из самых важных проблем – это переезд квартиры , но этот вопрос всегда можно быстро решить, если заказать качественные услуги переезда.

Мы привыкли к тому, что все предметы вокруг нас имеют вес. Происходит это потому, что сила гравитации притягивает их к Земле. Даже если мы летим в самолёте или прыгаем с парашютом, вес никуда от нас не девается. Но что же произойдёт, если вес всё же исчезнет, когда это бывает и какие интересные явления наблюдаются в условиях невесомости? Обо всём этом — в данном посте.

Закон всемирного тяготения, открытый ещё Ньютоном, гласит, что все тела, имеющие массу, притягиваются друг к другу. Для тел с маленькой массой такое притяжение практически не заметно, но если тело имеет большую массу, такую, как наша планета Земля (а её масса в килограммах выражается 25-значным числом), то притяжение становится заметным. Поэтому все предметы притягиваются к Земле — если их поднять, они падают вниз, а когда упадут, сила тяжести прижимает их к поверхности. Это и приводит к тому, что всё на Земле имеет вес, даже воздух прижимается к Земле силой тяжести и своим весом давит на всё, что находится на её поверхности.

Когда вес может исчезнуть? Либо тогда, когда сила тяжести вообще не действует на тело, либо тогда, когда она действует, но телу ничто не мешает свободно падать. Хотя с удалением от Земли сила притяжения к ней уменьшается, даже на высоте в сотни и тысячи километров она остаётся ещё большой, поэтому избавиться от силы тяжести непросто. А вот оказаться в состоянии свободного падения вполне возможно.

Например, можно оказаться в состоянии невесомости, если оказаться в самолёте, движущемся по специальной траектории — так же, как тело, которому не мешало бы сопротивление воздуха.

Выглядит всё это так:

Конечно, долго по такой траектории самолёт двигаться не может, т. к. врежется в землю. Поэтому с длительным пребыванием в условиях невесомости сталкиваются только космонавты, живущие на орбитальной станции. И им приходится привыкать к тому, что многие привычные нам явления в условиях невесомости происходят совсем не так, как на Земле.

1) В невесомости можно легко перемещать тяжёлые предметы и перемещаться самому, приложив лишь небольшое усилие. Правда, по этой же причине любые предметы нужно специально закреплять, чтобы они не летали по орбитальной станции, а на время сна космонавты забираются в специальные мешки, прикреплённые к стене.

Для того, чтобы научиться двигаться в невесомости, нужно время, и у новичков это получается не сразу. «Они толкаются со всей силы и ударяются головой, путаются в проводах и прочее, так что это источник бесконечного веселья» — сказал на эту тему один из американских астронавтов.

2) Жидкости в невесомости принимают шарообразную форму. Воду не получится, как мы привыкли на Земле, хранить в открытой посуде, вылить из чайника и налить в чашку, даже вымыть руки не получится привычным для нас способом.

3) Пламя в условиях невесомости очень слабое и со временем затухает. Если в обычных условиях зажечь свечу, она будет гореть ярко, пока не сгорит. Но происходит это потому, что нагретый воздух становится легче и поднимается вверх, освобождая место для свежего воздуха, насыщенного кислородом. В невесомости конвекции воздуха не наблюдается и со временем кислород вокруг пламени выгорает и горение прекращается.

Горение свечи в обычных условиях и в невесомости (справа)

Но постоянный приток кислорода нужен не только для горения, но и для дыхания. Поэтому если космонавт неподвижен (например, спит), то в отсеке должен работать вентилятор, чтобы перемешивать воздух.

4) В невесомости можно получать уникальные материалы, которые трудно или вообще невозможно получить в земных условиях. Например, сверхчистые вещества, новые композиционные материалы, большие правильные кристаллы и даже лекарства. Если бы удалось снизить стоимость доставки грузов на орбиту и обратно, это решило бы многие технологические проблемы.

5) В невесомости на борту орбитальной станции были впервые обнаружены некоторые ранее неизвестные эффекты. Например, образование структур, напоминающих кристаллические, в плазме, или «эффект Джанибекова» — когда вращающийся предмет через определённые промежутки времени внезапно меняет ось вращения на 180 градусов.

Эффект Джанибекова:

6) Невесомость оказывает существенное влияние на человека и живые организмы. Хотя к жизни в невесомости можно приспособиться, сделать это не так просто. Оказавшись в состоянии невесомости впервые, человек теряет ориентацию в пространстве, возникает головокружение, т. к. вестибулярный аппарат перестаёт нормально работать. Другие изменения в организме включают перераспределение жидкости в организме, из-за чего отекает лицо и закладывает нос, из-за пропадания нагрузки на позвоночник увеличивается рост, а при длительном пребывании в невесомости атрофируются мышцы и теряют прочность кости. Чтобы уменьшить негативные изменения, космонавтам приходится регулярно выполнять специальные упражнения.

После возвращения на Землю космонавтам приходится вновь приспосабливаться к прежним условиям не только физически, но и психологически. Они могут, например, по привычке оставить стакан в воздухе, забыв, что он упадёт.

«Физика невесомости». Как работают законы физики в условиях невесомости, рассказывают космонавты на МКС:

Космос — последний рубеж. Современная наука до сих пор крайне мало изучила космическое пространство. Но из того немногого, что мы уже знаем, есть крайне удивительные вещи. Итак, 10 самых интересных фактов о космосе и астронавтах.

Это довольно неприятный на слух, но странный факт.

В условиях микрогравитации астронавты не используют свои ноги для ходьбы. Поэтому кожа на ногах начинает смягчаться и шелушиться. Поскольку стирать каждый день вещи в космосе довольно сложно, астронавты носят одно и то же нижнее белье и носки в течение нескольких дней. Впоследствии эти носки нужно будет снимать очень осторожно, иначе мертвые клетки эпителия вырвутся в невесомую окружающую среду.

9. Космос тоже загрязнен

Немногие знают, но наша планета из космоса выглядит не так, как ее показывают в фильмах. Дело в том, что прекрасный вид загораживает космический мусор.

Космический мусор — это любой искусственный объект на орбите Земли, который больше не служит для полезных целей. По оценкам ученых, сегодня существует около 500 000 осколков космического мусора, включая частицы ракет и спутников и повседневные предметы, такие как гаечные ключи, использовавшиеся во время строительства Международной космической станции!

8. Мы становимся выше в космосе

Все дело в силе притяжения Земли. На поверхности нашей планеты сила тяжести немного сжимает наш позвоночник. Но на космической станции она ослабевает, и мы можем «вырасти» до 5 см. Такой же эффект будет наблюдаться на любой планете, где сила притяжения ниже земной.

7. В космос за час

Официально граница космического пространства начинается на высоте 100 километров в экзосфере. Эта метка названа «Линия Кармана», в честь американского ученого Теодора фон Кармана. Поэтому, если бы мы могли управлять автомобилем и вести его вверх, то до космоса можно было добраться менее чем за час.

6. Вы можете заплакать в космосе, но ваши слезы не упадут

На борту Международной космической станции вода плавает как пузырьки или сферы. Когда выделяются слезы, то в условиях микрогравитации они не падают вниз, а скапливаются вокруг глаза. Но это только звучит интересно. На самом деле такой процесс опасен не только для здоровья, но и для жизни астронавта.

5. У экипажа «Аполлона-11» не было страховки

Несмотря на всю состоятельность НАСА, перед полетом на Луну астронавтов Нила Армстронга, База Олдрина и Майкла Коллинза даже не застраховали. Поэтому перед взлетом будущие национальные герои подписали фотографии, которые впоследствии могли быть проданы на аукционе в случае их смерти. Также на этих фотокарточках стояла официальная печать НАСА и дата миссии — 16 июля 1969 года.

4. В космосе металл слипается

Если вы приложите два куска железа друг к другу в космосе, они сольются воедино. Такой эффект носит название «холодная сварка». На Земле, из-за присутствия молекул кислорода и воды в нашей окружающей среде этого не происходит, но способ используется во время некоторых производственных процессов. В космосе же, из-за отсутствия каких-либо других атомов, частицы металла перестают «понимать», к какому именно куску они принадлежат, и самостоятельно свариваются.

3. Самая горячая планета — не самая близкая к Солнцу

Несмотря на то, что Меркурий находится ближе всех к солнцу, он — не самая горячая планета. На Меркурии нет атмосферы, поэтому он нагревается достаточно только в дневное время — до +425 °С, а ночью ничто не удерживает тепло, поэтому на поверхности становится холодно, почти до -200 С. А самая горячая планета — Венера. Ее толстые облака буквально поглощают температуру, заставляя нагреваться до +500 °С.

2. Прощай, старый друг!

Наш добрый сосед и спутник Луна медленно покидает нас. Несмотря на то, что существует оптическая иллюзия, которая заставляет Луну казаться больше, каждый год она отдаляется от Земли на 3,8 см. Это вызвано приливными эффектами, которые создает сам спутник. Следовательно, наша планета замедляет вращение примерно на 0,002 секунды каждый 1000 лет. Поэтому однажды сутки будут составлять не привычные 24 часа, а 25. Когда — считайте сами.

1. Если положить Сатурн в воду, то он не утонет

Многие говорят о массе планет, о том, что тяжелее — Земля или Солнце. Но в нашей системе существует одна гигантская планета, которая даже не утонет в воде. Плотность Сатурна настолько низка, что, если поместить его в гигантский стакан воды, он всплывет. Об этом говорят цифры: фактическая плотность Сатурна составляет 0.687 г/см3 , а плотность воды 0.998 г/см 3 . Проверить данный факт на практике, разумеется, вряд ли когда-то удастся.

© showroom-mais.ru, 2024
ShowRoom - Женский онлайн журнал